

ANNUAL
WATER REPORT

Reporting Year 2011

QUALITY

PWSID#: 2550210

This report was prepared by:
City of St. Augustine
254 W.King St.
St. Augustine, FL 32084

Meeting the Challenge

We are once again proud to present our annual water quality report covering all testing performed between January 1 and December 31, 2011. Over the years we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

Please share with us your thoughts or concerns about the information in this report. After all, well-informed customers are our best allies.

For more information about this report, or for any questions relating to your drinking water, please call George Lomax, Water Department Superintendent, at (904) 825-1044.

Where Does My Water Come From?

Our water source is groundwater from Eight wells, one of which withdraw from the Surficial Aquifer, and Seven of which withdraw from the Floridian Aquifer.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at (800) 426-4791.

Source Water Assessment

In (2011) the Department of Environmental Protection performed a Source Water Assessment on our system. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells (or surface water intakes). Potential sources of contamination identified include underground petroleum storage tanks, Dry cleaning facilities, and wastewater treatment plants. There is one potential source of contamination identified for this system, with a moderate susceptibility level. The assessment results are available on the FDEP Source Water Assessment and Protection Program Web site at www.dep.state.fl.us/swapp or they can be obtained from George Lomax, Manager of Water Treatment Plant, by calling (904) 825-1044.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or <http://water.epa.gov/drink/hotline>.

Water Treatment Process

Our water treatment process includes lime softening, settling, recarbonation, filtration and chloramine disinfection. Beginning in July 2008 the City of St. Augustine began the operation of a new Low Pressure Reverse Osmosis/Nanofiltration Treatment Plant. This new plant is capable of treating 2 million gallons of water per day. The treated water from this operation is blended with the water from our Lime Softening Plant.

Fact or Fiction

Tap water is cheaper than soda pop. (Fact: You can refill an 8 oz. glass of tap water approximately 15,000 times for the same cost as a six-pack of soda pop. And, water has no sugar or caffeine.)

Methods for the treatment and filtration of drinking water were developed only recently. (Fiction: Ancient Egyptians treated water by siphoning water out of the top of huge jars after allowing the muddy water from the Nile River to settle. And, Hippocrates, known as the father of medicine, directed people in Greece to boil and strain water before drinking it.)

A typical shower with a non-low-flow showerhead uses more water than a bath. (Fiction: A typical shower uses less water than a bath.)

Water freezes at 32 degrees Fahrenheit. (Fiction: You can actually chill very pure water past its freezing point (at standard pressure) without it ever becoming solid.)

The Pacific Ocean is the largest ocean on Earth. (Fact: The Atlantic Ocean is the second largest and the Indian Ocean is the third largest.)

A single tree will give off 70 gallons of water per day in evaporation. (Fact)

Who uses the most water?

On a global average, most freshwater withdrawals—69 percent—are used for agriculture, while industry accounts for 23 percent and municipal use (drinking water, bathing and cleaning, and watering plants and grass) just 8 percent.

How much water does a person use every day?

The average person in the U.S. uses 80 to 100 gallons of water each day. During medieval times a person used only 5 gallons per day.

Should I be concerned about what I'm pouring down my drain?

If your home is served by a sewage system, your drain is an entrance to your wastewater disposal system and eventually to a drinking water source. Consider purchasing environmentally friendly home products whenever possible, and never pour hazardous materials (e.g., car engine oil) down the drain. Check with your health department for more information on proper disposal methods.

How long does it take a water supplier to produce one glass of drinking water?

It can take up to 45 minutes to produce a single glass of drinking water.

How much emergency water should I keep?

Typically, 1 gallon per person per day is recommended. For a family of four, that would be 12 gallons for 3 days. Humans can survive without food for 1 month, but can only survive 1 week without water.

Sampling Results

During the past year we have taken hundreds of water samples in order to determine the presence of any radioactive, biological, inorganic, volatile organic or synthetic organic contaminants. The table below shows only those contaminants that were detected in the water. The state allows us to monitor for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

PRIMARY REGULATED CONTAMINANTS								
Radioactive Contaminants								
CONTAMINANT AND UNIT OF MEASUREMENT	DATE OF SAMPLING (MO./YR.)	MCL VIOLATION (YES/NO)	LEVEL DETECTED	RANGE OF RESULTS	MCLG	MCL	LIKELY SOURCE OF CONTAMINATION	
Radium 226 + 228 [Combined Radium] (pCi/L)	05-10/08-10	No	0.5	ND-0.5	0	5	Erosion of natural deposits	
Inorganic Contaminants								
Barium (ppm)	03-11	No	0.011	0.00028-0.011	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	
Fluoride (ppm)	03-11	No	0.36	0.32-0.36	4	4.0	Erosion of natural deposits; discharge from fertilizer and aluminum factories; water additive that promotes strong teeth when at optimum levels between 0.7 and 1.3 ppm	
Lead [point of entry] (ppb)	03-11	No	2.2	ND-2.2	NA	15	Residue from man-made pollution such as auto emissions and paint; lead pipe, casing, and solder	
Nitrate [as Nitrogen] (ppm)	03-11	No	0.084	0.066-0.084	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	
Sodium (ppm)	03-11	No	37	35-37	NA	160	Salt water intrusion, leaching from soil	
Stage 1 Disinfectants and Disinfection By-Products								
CONTAMINANT AND UNIT OF MEASUREMENT	DATE OF SAMPLING (MO./YR.)	MCL VIOLATION (YES/NO)	LEVEL DETECTED	RANGE OF RESULTS	MCLG OR [MRDLG]	MCL OR [MRDL]	LIKELY SOURCE OF CONTAMINATION	
Chloramines (ppm)	1-11/12-11	No	3.20	2.60-3.55	[4]	[4.0]	Water additive used to control microbes	
Haloacetic Acids (five) [HAA5] (ppb)	09-11	No	8.35	5.41-10.37	NA	60	By-product of drinking water disinfection	
TTHM [Total trihalomethanes] (ppb)	09-11	No	23.55	23.0-24.62	NA	80	By-product of drinking water disinfection	
Lead and Copper (Tap water samples were collected from sites throughout the community)								
CONTAMINANT AND UNIT OF MEASUREMENT	DATE OF SAMPLING (MO./YR.)	AL EXCEEDANCE (YES/NO)	90TH PERCENTILE RESULT	NO. OF SAMPLING SITES EXCEEDING THE AL	MCLG	AL (ACTION LEVEL)	LIKELY SOURCE OF CONTAMINATION	
Copper [tap water] (ppm)	8-10/9-10	No	0.13	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
Lead [tap water] (ppb)	08-10/09-10	No	2.1	2	0	15	Corrosion of household plumbing systems, erosion of natural deposits	

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

IDSE (Initial Distribution System Evaluation): An important part of the Stage 2 Disinfection Byproducts Rule (DBPR). The IDSE is a one-time study conducted by water systems to identify distribution system locations with high concentrations of trihalomethanes (THMs) and haloacetic acids (HAAs). Water systems will use results from the IDSE, in conjunction with their Stage 1 DBPR compliance monitoring data, to select compliance monitoring locations for the Stage 2 DBPR.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.